
sisco

Thermal Gas Mass Flow Meter Installation and Operation Guide

CONTENTS

<u>1.</u> About this manual3 -				
2. Safety Information 4 -				
2.1 Use personnel 4 -				
2.2 store and handling 4 -				
2.3 Application condition 4 -				
2.4 Safety standards and specifications 4 -				
2.5 Intrinsic safety and explosion protection4 -				
2.6 Environmental protection 4 -				
3. Introduction5 -				
3.1 measuring principle 5 -				
3.2 Specifications 6 -				
3.3 Mechanical Construction 7 -				
4. Wiring9-				
4.1 Preparation of wiring9-				
4.2 Terminal description 10 -				
4.3 Terminal connection 11 -				
5. technical parameters 12 -				
6. Install 13 -				
6.1 Installation direction 13 -				
6.2 Pipe requirements 13 -				
6.3 Installation Steps 15 -				
7. Operating the instrument 17 -				
7. 1 Keyboard and display 17 -				
7. 2 Menu Instruction 18 -				
8. Quality asurrance and after-sale service 28 -				
Appendix 1 Modbus register address table 29 -				
Appendix 2 Conversion Coefficient of Common Gas 30 -				
Appendix 3 Trouble Shooting 32 -				
Appendix 4 Upper Range Value of Common Gas 33 -				

1. About this manual

Thank you for choosing our products.

Through this manual, we strive to give you an accurate understanding of the thermal mass flow meter measurement principle, related concepts, terminology and installation and application of the correct methods and conditions.

Symbols and meanings used in this manual:

Graphic sy	mbol meanings in this manual
^	Incorrect operation or infringement with the relevant regulations and the instructions
	of this manual may result in damage of the instrument and equipment
	Important concepts, definitions or methods
	Caution!
2	Improper or careless operation and application may result in incorrect operation or
	even damage to the instrument
	Grounding mark
(Ex)	The Specifications and requirements for using intrinsical safety instruments

2. Safety Information

2.1 Use personnel

The thermal mass flow meter is a precision instrument which is produced by the latest technology and technology. Improper installation and use can lead to abnormal and damage of the instrument and even the process control equipment. Engineers and technicians who install, set up and connect the product must read this manual carefully before using the instrument.

2.2 store and handling

•Storage temperature: -40 °C~80°C

•Relative humidity: 20~90%

The storage and handling process should be placed in the instrument box to avoid bumping or shock.

2.3 Application condition

Before installation should be sure that the measured medium temperature and pressure is not more than the nominal temperature and pressure. Determine whether the measured gas is pure, the gas does not contain particulate matter, so as to avoid the damage of granular materials on the sensor.

2.4 Safety standards and specifications

Installation, wiring and use of this product should comply with the requirements specified in this manual and the general international safety standards, accident prevention measures and local standards.

2.5 Intrinsic safety and explosion protection

 Dangerous places or may be flammable gas and air mixture should use explosion-proof type thermal mass flow meter in - field measurement;

- he explosion-proof thermal mass flow meter with appropriate safety gate shall be obtained using supporting explosion-proof certification;
- Installation and wiring intrinsic safety instrument system and related equipment shall comply with the relevant standards and norms of the country.

2.6 Environmental protection

The packaging of this product can meet the ISO:14001 specification, and will not pollute the environment.

Please return to the professional recycling company or send back to us, so as to avoid polluting the environment.

3. Introduction

3.1 measuring principle

Thermal gas mass flow meter is designed on the basis of thermal dispersion, and adopts method of constant differential temperature to measuring gas flow. It has advantages of small size, easy installation, high reliability and high accuracy, etc.

The meter contains two platinum resistance temperature sensors. The thermal principle operates by monitoring the cooling effect of a gas stream as it passes over a heated sensor. Gas flowing through the sensing section passes over two sensors one of which is used conventionally as a temperature sensor, whilst the other is used as a heater. The temperature sensor monitors the actual process values whilst the heater is maintained at a constant differential temperature above this by varying the power consumed by the sensor. The greater the gas velocity, the greater the cooling effect and power required to maintain the differential temperature. The measured heater power is therefore a measure of the gas mass flow rate.

The format of gas velocity and power is shown as below:

$$V = \frac{K[Q/\Delta T]^{1.87}}{\rho_g} \dots \dots (1)$$

Where: is specific gravity of medium

 $\stackrel{}{\underset{}}{\overset{}}_{\stackrel{}{g}}$ K is balance coefficient Q is heater power

 Δ T is differential temperature

The medium temperature range of meter is -40 $^\circ\!\!C\!\sim\!220\,^\circ\!\!C.$

In the format (1), the specific gravity of medium is related to the density:

$$\label{eq:rho} \rho = \rho_n \times \frac{101.325 + P}{101.325} \times \frac{273.15 + 20}{273.15 + T} \dots \dots (2)$$

Where: ρ_{gis} the medium density in working condition (kg/m³)

 ρ_n is the medium density in standard condition, 101.325kPa and 20°C (kg/m³)

P is the pressure in working condition (kPa)

T is the temperature in working condition $(^{\circ}C)$

In the formats (1) and (2), there is a certain functional relationship between the velocity and pressure in working condition, medium density, the temperature in working condition.

Due to the sensor temperature is always 30°C higher than the medium temperature (environment temperature), and the meter adopts method of constant differential temperature, therefore the meter do not need to do temperature and pressure compensation in principle.

3.2 Specifications

Features

- Measuring the mass flow or volume flow of gas
- Do not need to do temperature and pressure compensation in principle with accurate measurement and easy operation.
- Wide range: 0.5Nm/s~100Nm/s for gas. The meter also can be used for gas leak detection
- Good vibration resistance and long service life. No moving parts and pressure sensor in transducer, no vibration influence on the measurement accuracy.
- Easy installation and maintenance. If the conditions on site are permissible, the meter can achieve a hot-tapped installation and maintenance. (Special order of custom-made)
- Digital design, high accuracy and stability
- Configuring with RS485 or HART interface to realize factory automation and integration

Description	Specifications
Measuring Medium	Various gases (Except the acetylene)
Pipe Size	DN10~DN4000mm
Velocity	0.1~100 Nm/s
Accuracy	±1~2.5%
	Sensor: -40°C∼+220°C
Working Temperature	Transmitter: -20℃~+45℃
	Insertion Sensor: medium pressure≤ 1.6MPa
Working Pressure	Flanged Sensor: medium pressure≤ 1.6MPa
	Special pressure please contact us
Power Supply	24VDC or 220VAC
Response Time	1s
Output	4-20mA (optoelectronic isolation, maximum load 500 Ω), Pulse, RS485
Output	(optoelectronic isolation) and HART
Alarm Output	2 line Relay, Normally Open state, 3A/30V/DC
Sensor Type	Standard Insertion, Hot-tapped Insertion and Flanged
Construction	Compact and Remote
Pipe Material	Carbon steel, stainless steel, plastic, etc
Display	4 lines LCD
Display	Mass flow, Volume flow in standard condition, Flow totalizer, Velocity, etc.
Protection Class	IP65
Sensor Housing	
Material	Stainless steel (316)

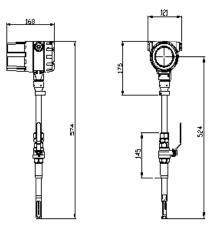
3.3 Mechanical Construction

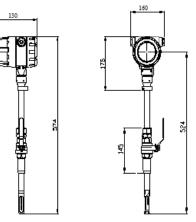
3.3.1 Appearance

Fig. 1 Standard Insertion Flow Meter (Pipe size DN100-DN500)

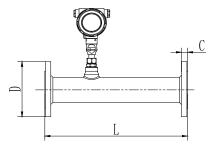
Fig. 2 Flanged Flow Meter (Pipe size DN10-DN80)

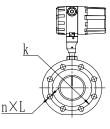
Fig. 3 Hot-tapped Insertion Flow Meter (Pipe size DN100-DN4000. Special requirements please contact us)


The insertion sensor of compact insertion flow meter should be inserted to axis of pipe, and the length of the insertion sensor is decided by pipe size, please confirm the pipe size when ordering. If the insertion sensor can't be inserted to axis of pipe, the manufacturer will provide a calibration factor to achieve an accurate measurement.



3.3.2 Dimensions


Dimensions of standard insertion sensor


Dimensions of hot-tapped insertion sensor

The dimensions of flanged sensor

PN1.6Mpa Plane and surface plate flat welding steel pipe flanges (Unit: mm)

Nominal Diameter	Flange Outer diameter	Center Hole	Screw Hole	Screw Thread	Sealing	Face	Flange Thickness	Pipeline Length
DN	D	k	n×L		d	f	С	L
15	95	65	4×14	M12	46	2	14	200
20	105	75	4×14	M12	56	2	16	200
25	115	85	4×14	M12	65	2	16	200
32	140	100	4×18	M16	76	2	18	200
40	150	110	4×18	M16	84	2	18	200
50	165	125	4×18	M16	99	2	20	200
65	185	145	4×18	M16	118	2	20	200
80	200	160	8×18	M16	132	2	20	200
100	220	180	8×18	M16	156	2	22	200

For DN15-DN80, the meter can be made with threading to connect.

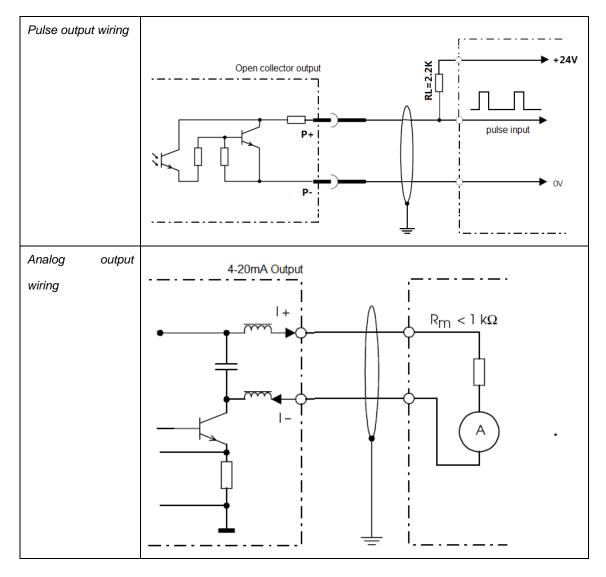
The above table is used for rated pressure of 1.6MPa. If the rated pressure is more than 1.6MPa, please contact us for special order.

4. Wiring

4.1 Preparation of wiring

- You should read and connection method of supporting the use of thermal mass flowmeter or other unit instrument system and requires careful before connection;
- The external cable recommended two core shielded cable and cable connection and good sealing;
- The explosion-proof products should be selected in accordance with the relevant standard of BenAn instrument cable and make sure that the cable parameters meet the explosion-proof instrument system requirements;

- Working voltage range of DC18~30V. When the voltage is higher than DC30V, the instrument will be damaged, and measures should be taken to prevent the supply voltage from above 30V;
- To the 24V DC power supply thermal mass flowmeter shall meet the requirements of IEC-1010-1 or equivalent standard SELV safety extra low voltage;
- Before the connection with the voltmeter to measure the power supply voltage, the voltage is DC24V;



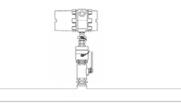
4.2 Terminal description

Terminal diagram	Mark	Description		
	24V+	24V Power supply positive pole		
	24V-	24V Power supply 0V		
	OUT24	24V Power output		
	V			
RL3 RL4	GND	RS232 GND		
I+IT- A+: B- PULSE FLON R5485 (P+I P-)	TXD	RS232 TXD		
	RXD	RS232 RXD		
	P+	Pulse output positive pole		
	P-	Pulse output negative pole		
	l+	Current output positive pole		
	l-	Current output negative pole		
	485+/A	RS485 communication interface A		
	485-/B	RS485 communication interface B		
	ALARM	Alarm output 1		
	1			
	ALARM	Alarm output 2		
	2			
	P-LED	Power indicator		
	I-LED	Analog output indicator		
仅未接线侧	0	Mounting hole of circuit board and shell		
	\bigcirc	Mounting hole between boards and		
		boards		
000000	9	Sensor terminal		
		PT20/PT300 is		
PT20 PTX00		Default combination ,		
		Other optional sensors		
		PT20/PT200、 PT20/PT1000、		

4.3 Terminal connection

5. technical parameters

Power Supply	Supply Voltage	24VDC/1.5A	
		Allow residual ripple: 0~100Hz,	
		Upp=30Mv, Uss<10mV	
		Maximum noise: 500Hz~10KHz , U_{eff} = 2.0Mv	
		or 85~265V AC	
	Operating current	<650mA	
Output	Output current mode	4~20mA/ Fixed current output	
	RS485 output	Baud rate: 1200/2400/4800/9600/19200	
		Data: 8	
		Check: None/Odd/Even	
		Stop: 1	
	RS232 output	Baud rate: 9600, Data: 8, Check: None,	
		Stop: 1	
	Communication protocol	MODBUS RTU	


6. Install

stable flow field is the premise of the accurate measurement of the thermal instrument. Therfore,

please note following points when installing the instrument.

6.1 Installation direction

Horizontal installation

The process pressure must not exceed 2MPa when installing

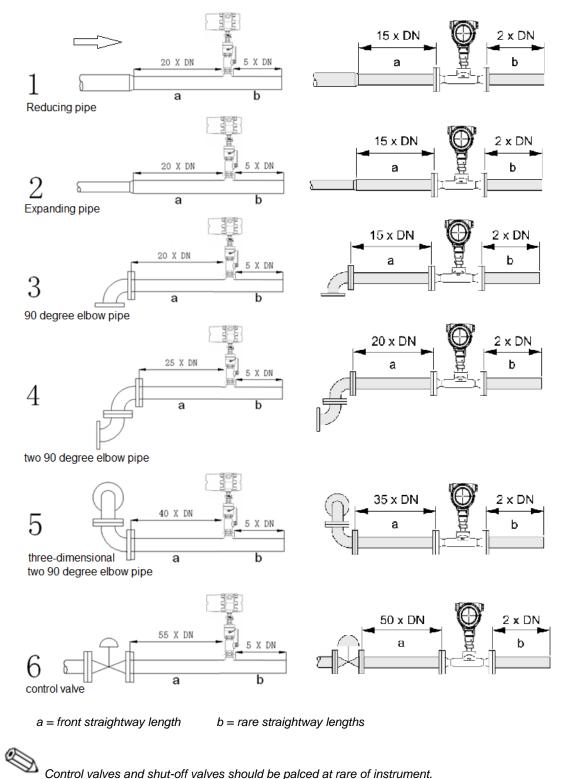
Vertical installation

The process pressure must not exceed 2MPa when installing

6.2 Pipe requirements

If the Interference sources (i.e. bends, reduce, valves, T tubes, ect.) exist on the instrument intake pipe, measures must be taken to minimize their impacts on measurement performance

The following diagrams describe the recommended minimum straightway lengths of some types of pipe.

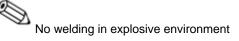

The straightway length should be as long as possible while the room is sufficient. Without the consideration of other factors, the recommended minimum straightway lengths are:

front straightway length: 20×DN

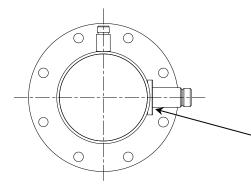
rare straightway length: 5×DN

- The recommended straightway lengths are minimum, increased straightway lengths improve the instrument performance.
- If multiple Interference sources exist in front of instrument, the recommended straightway lengths are absolute.
- The contorl valves are recommended to be place at rare of instrument.
- For the light gases, such as helium and hydrogen, front straightway lengths should be doubled.

Control valves and shut-off valves should be palced at rare of instrument.


6.3 Installation Steps

The base of thermal flowmeter



The base of Hot-tapped insertion type The base of standard insertion type

Carry out the welding operation in accordance with the requirements of special environment.

When installing, place the base on the top of pipe, and make the through-hole of base be perpendicular to axis of pipe. The good welding location of base and welding process is as below.

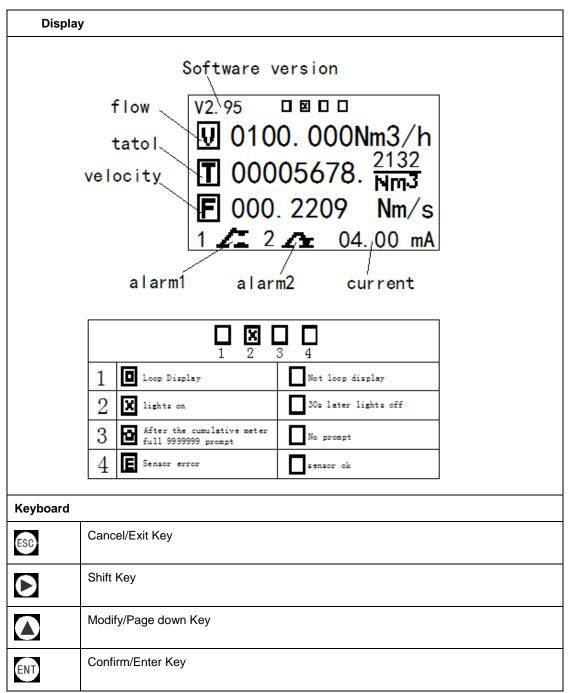
Before Welding, the base should be processed as the same as the circular arc of pipe to ensure sealing

Good welding location of base

The installation of standard insertion type

Identify an appropriate location for the flow meter.

Confirm the inner diameter and wall thickness of pipe

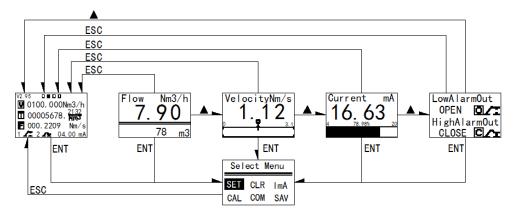

- Place the other part of meter into ball valve, and calculate the insertion depth according to the inner diameter and wall thickness of pipe. This step doesn't need to screw the nut by hand.
- Turn the connecting rod of sensor to make the mark direction of sensor as the same flow direction.
- According the calculated data on site, ensure the insertion depth by corresponding calibration on the connecting rod, and then screw the nut tightly.
- If the meter is horizontal installation, the display of the meter can be installed in the direction of 90°, 180° or 270° to meet various requirements.

The installation of hot-tapped insertion type

- Before installation, please conform the connection type and install fittings.
- Before installation, the site must be shut down, and strictly follow the rules of factory.
- Identify an appropriate location for the flow meter.
- According to length requirement of meter, cut the pipe, and install the flanges and bolts on the pipe.
- Ensure the mark direction of meter is as the same flow direction, the display is perpendicular to horizontal plane, the axis of pipeline is paralleled to horizontal plane, the error can't be more than ±2.5, and then fix the meter by bolts.

7. Operating the instrument

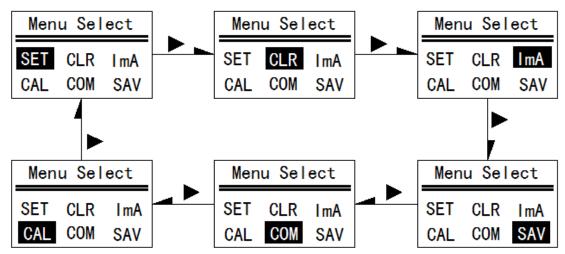
7. 1 Keyboard and display

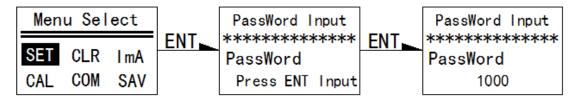


7. 2 Menu Instruction

7. 2. 1 Display sreens

Flow Nm3/h 7.90 78 m3 Display the instant flow rate and the unit of instant flow rate. Cumulative flow and the unit of Cumulative flow and the unit of Cumulative flow The cumulative flow has 10 digits dsiplay, if the cumulative flow is greater than 9999999, a carry is generated and indicated by	VelocityNm/s 1.12 Junc 2 Junc 2 Ju	Current mA 16.63 ₄ 20 Present value of output current. The bar at bottom indicates the percentage of output current in its range.
LowAlarmOut OPEN OLT HighAlarmOut CLOSE CLT The indicators of upper and lower alarm states. The ralies are nomally on without alarm.		V2. 95 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

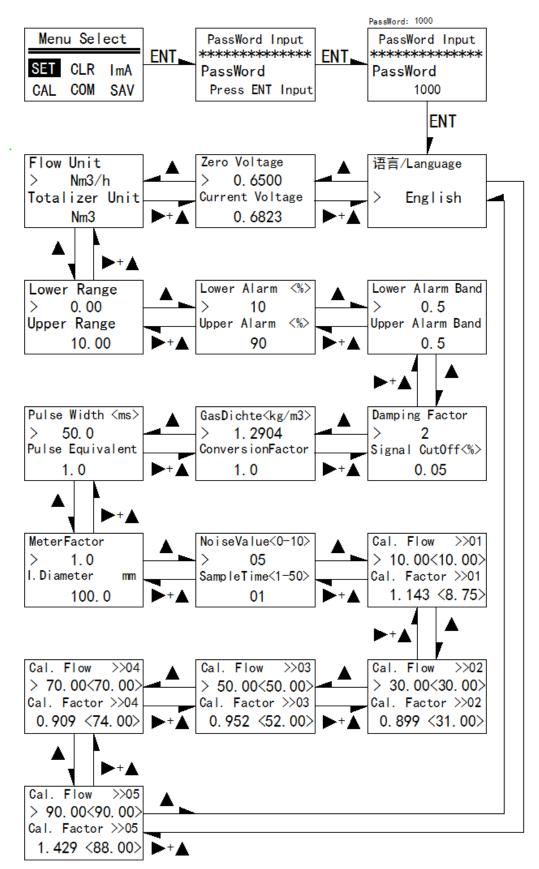

Switch between 5 display screens by pressing (the page down key). Pressing Entrer key can enter currently displaied menu. Back to flow display screen from non flow display screens by pressing Cancel key.


7. 2. 2 Menu selecting and password entering

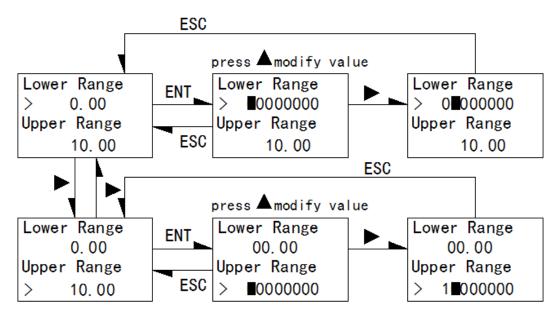
Select Menu	Menu Selecting
	SET: Setting of basic parameters
SET CLR ImA	CLR: Setting the integer and decimal of cumulative flow
CAL COM SAV	ImA: Setting the current parameters
	CAL: Calibrate instrument
	COM: settings of RS485 communication
	SAV: Save and restore paramters
	To set basic parameters, enter:1000
PassWord Input	To set backlit, enter:2000
PassWord	To clear cummulative flow, enter:1000
Press ENT Input	To set the current parameters, enter:1000
· ·	To calibrate instrument, enter:0603
	To set communication parameters, enter:1000
	None password required for saving parameters

Press Shift Key to select the menu item.

To set the basic parameters, move the black background cursor to "SETTINGS" item, press Enter key and the password entering screen appears. Press Enter Key once more, to switch to password entering model (prompted by blinkong cursor). Enter the password and press Enter key again. Once the password is correct, the basic parameter setting screen appears or an "Error" message is given if the password is incorrect.

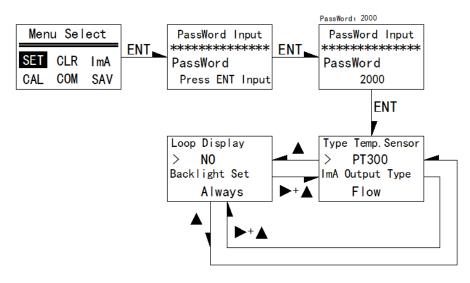

7. 2. 3 Basic Paramters

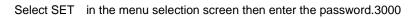
语言/Language > English Zero Voltage > 0.6500 Current Voltage 0.6823	Language: Simplified Chinese/English User Zero point and present voltage If there is no medium flow but the isntrument does not display the zero flow rate, adjust the user zero point to make set the display to zero.
Flow Unit > Nm3/h Totalizer Unit Nm3	 > signal indicates that this field is adjustable Flow rate unit is selectable from: g/min、g/s、Kg/min、Kg/h、 Nm3/h、Nm3/min、NL/h、NL/min、SCFM Cummulative flow unit could be one of: g、Kg、Nm3、NL、CFM, The cummulative flow unit is cahnged with the flow rate unit setting and therfore does not need to be set seperately.
Lower Range > 0.00 Upper Range 10.00	 > signal indicates that this field is adjustable. To switch between lower span and upper span by pressing Shift Key. Press enter to set span limits, the first digit will blink if it in editing model.
Lower Alarm <%> > 10 Upper Alarm <%> 90	Set the upper alarm and lower alarm. The alarm setpoints are always expressed in percentage of instrument full scale . For instance, setting the Lower alarm setpoint to 10% means: The lower alarm setpoint =(upper span - lower span)*10%.
Lower Alarm Band > 0.5 Upper Alarm Band 0.5	At the example left, both upper anf lower hysteresises are set to 0.5. That means,: the switch back point of upper alarm = upper alarm setpoint - upper hysteresis(i.e. 8-0.5) the lower alarm switch back point = lower alarm setpoint + lower hysteresis(i.e. 2+0.5)

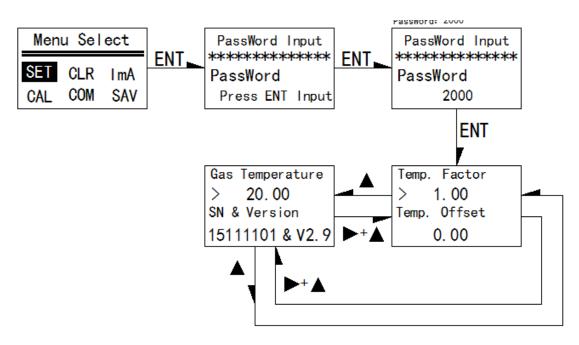

Damping Factor	Damping factor: default value is 2 while it could be adjusted
> 2	bwtween 0 and 50.
Signal CutOff<%>	Decreasing the damping factor results in a quicker response of
0. 05	flow rate changes but may counts the unwanted interferences in.
0.00	Increasing the damping factor results in a smoother curve but
	may be dull for quick flow rate changes.
	Signal cut-off: Set as a percentage of full scale. Any signal less
	than this value will be cut-off and considered as ZERO.
	Since the laboratory can not calibrate the flow rate of the medium according to
	the gas actually used by the customer, the Conversion Coefficient of the
Medium Type[00]	medium is usually calibrated according to the flow rate of the gas actually used
00. Air<1.2048>	
	by the customer converted into the air, when in use, the conversion Coefficient
Convers ionFactor	of measuring medium relative to air should be set to ensure the measuring
	accuracy. Instrument with Conversion Coefficient for the reference value, if
	necessary to modify the re-input. Instrument internal with 59 Gas Conversion
	Coefficient, when the medium is mixed gas, need to calculate the conversion
	coefficient. The conversion factor table and the calculation of the conversion
	factor of the gas mixture are shown in Appendix 2
GasDichte <kg m3=""></kg>	Gas density: unit Kg/m3 When the actual medium density is
> 1.2904	differnt from calibration gas density, this could be used for density
ConversionFactor	correction. Always, this is used for unit conversion of volume
1.0	and weight.
1. V	Conversion rate: The rate of calibration gas desity and actual gas
	density.
Pulse Width <ms></ms>	Output pulse width (50-1000ms)
> 50.0	Pulse equivalent: Defines how many volum per pulse.
Pulse Equivalent	There 4 pulse equivalents: 1.0、10.0、100.0 and 1000.0. Setting
1.0	pulse equivalent to 10.0 means: for every 10 units cummulative
1. V	flow, the instrument outputs a pulse.
	Instrument factor: The instrument factor is used to compensate
MeterFactor	the interference of cross section velocity distribution and the
> 1.0 I.Diameter mm	influence of the specific application environment.
	The instrument factor is a coefficient of linear flow and results
100.0	in:
	Display flow rate = instrument factor * actual measured flow rate.

	Pipe inner diameter: Enter the real pipe inner diameter here in unit		
	of mm.		
NoiseValue<0-10>	Noise threshold: Ranged between 0 and 10 and used to suppress		
> 05	the noise signal. The higher the value is, the higher the singal		
SampleTime<1-50>	strength wiuld be considered as noise.		
01	Sampling peroid: The instrument averages all the smapled flow		
	rate values within the given period and takes the verage value as		
	the measured value. Sampling period is set as an increamtal of		
	200ms. For example, if the sampling period is set 5, the actual		
	instrument sampling time is 5*200ms = 1s.		
Cal. Flow >>01	Segmental correction factor. Up to 5 segments could be set to		
> 10. 00<10. 00>	correct the nonlinear errors. The segment number must be		
Cal. Factor >>01	ascending. The total number of segments could be less than 5 but		
1. 143 <8. 75>	the correction takes from the firt segment and in a row.		
Cal. Flow >>02			
> 30. 00<30. 00>	Nm3/h ▲ correction factor = <u>correction value</u> actual value		
Cal. Factor >>02	(display value)		
0.899 <31.00>	90		
Cal. Flow >>03			
> 50.00<50.00>	60		
Cal. Factor >>03			
0. 952 <52. 00>	30		
Cal. Flow >>04			
> 70.00<70.00>	0 1 40 60 80 100 ► Nm3/h 8.75 31.0 52.0 74.0 88.0 actual value		
Cal. Factor >>04	(measured value)		
0.909 <74.00>	(display value) =actual value X correction factor		
Cal. Flow >>05	correction factor 1.143 =10.00/8.75		
> 90. 00<90. 00>	correction factor 0.899 =(30.00-10.00)/(31.00-8.75)		
Cal. Factor >>05	correction factor 0.952 =(50.00-30.00)/(52.00-31.00)		
1. 429 <88. 00>			
	correction factor $0.909 = (70.00-50.00)/(74.00-52.00)$		
	correction factor 1.429=(90.00-70.00)/(88.00-74.00)		

Select menu item in the menu selection screen then enter the password.




After entered the menu item , press the "ESC" Key to return to the menu selection creen, press the "ENT" key to enter the value set


Select SET in the menu selection screen then enter the password. 2000

Type Temp. Sensor	Sensor Type: PT100、PT200、PT300、PT1000
> PT300	This function is reserved for manufacturer. The user should not
ImA Output Type	set this value as it affects the temperature value.
Flow	Output Type: flow rate or velocity
	To set the 4~20mA outpout reprsents which parameter. If it is set
	to velocity, the span setting is the scop of velocity.
Loop Display	Loop display: Loop or NOT
> NO	If it is set to loop, then the screens switch in a loop style with 10s
Backlight Set	interval.
Always	Backlit Setting: Temporary / Always on
	Temporary: the backlit lights up when a key is pressed down and
	turns off if no key is pressed within 30s.
	Always On: The backlit is always on.

Temp. Factor > 1.00 Temp. Offset 0.00	Gas tmeperature correction. T=at+b Where, a is the coefficient, b is the offest
Gas Temperature > 20.00 SN & Version 15111101 & V2.9	Present value of temperature The serial number and version of instrument

7. 2. 4 Cummulative Settings

TotalizerDecimal > 0.12 TotalizerInteger	Clear or set	the cumulative flow decimal and integer
0		

7. 2. 5 Current settings

I Output Mode > 4-20mA Fixed Output 4.0	Current output model: 4~20mA and fixed current. When the "Fixed current" is selected, the output currrent is fixed in a given value.
Adjust lout Low > 4.0 Adjust lout High 20.0	For example: the current output model is set to "4~20mA" When there is no flow, if the output is measured as 3.89mA with a multimeter, then set the "Adjust lout Zero " to 3.89mA At the maximum flow rate, if the outpout is measured as 19.75mA with a multimeter, then set the "Adjust lout Zero " to 19.75mA

Calibrate the cuurent output with "Fixed current" model:

Setp 1: Connect a multimeter to the current output circuit

Setp 2: Set the current output model to "Fixed current"

Step 3: Move the ">" cursor to next row, enter the setting model by pressing Ent key. Select the output current value by pressing Page Down Key. Select the value to 4mA.

Step 4: Check the multimeter reading, if it's not 4mA (for example, 3.90mA), press Page Down Key to enter the calibration menu. Move the ">" cursor to " Adjust lout Zero " and then press Ent Key to edit the value. Enter 3.90mA(in this example) and then press Ent Key angain to save.

Step 5: Hold down the Shift Key and Page Down Key at same time to return to previous menu. Select the 20mA and press Ent Key.

Step 6: Check the multimeter reading, if it's not 20mA (for example, 19.90mA), press Page Down Key to enter the calibration menu. Move the ">" cursor to " Adjust lout Span " and then press Ent Key to edit the value. Enter 19.90mA(in this example) and then press Ent Key angain to save.

7. 2. 6 Communication Settings

Device ID > 1	Modbus Device ID, ranged from 0 to 255
Comm. Parameter > BaudRate 9600 Parity None StopBit 1	Set the RS485 port baud rate and parity bit. The stop bit is fixed as i bit. The default parameters of RS485 are : Baud Rate:9600 Parity bit: NONE Stop Bit: 1 Data Bits:8

7. 2. 7 Save and restore paramters

Save Parameters	Save Parameters	Save Parameters	Save Parameters
> save	> save	> save OK	> save Err
Restore Factory	Restore Factory	Restore Factory	Restore Factory
Restore	Restore	Restore	Restore
Save Parameters	Saving	Saved successfully	Failed when saving
Save Parameters		Save Parameters	Save Parameters
save		save	save
Restore Factory		Restore Factory	Restore Factory
> Restore		> Restore OK	> Restore Err
Restore parameters		Restored successfully	Failed wen restoring

8. Quality asurrance and after-sale service

According to the ISO9001:2000 quality management and control system, this product is made of new raw materials and components, and has been tested strictly in factory. However, due to the uncertainties that may arise in transportation or use, we undertake to ensure that:

- Whithin 2 weeks from the date of delivery, if a quality defects can be recognized, the instrument will be changed free of charge
- Whithin 1 year from the date of delivery, if the instrument is damaged but not caused by improper using or users, it will be repaired free of charge.
- Damages caused by following resons are not considered as the free service conditions
 In violation of the relevant provisions of the manual requirements and installation or use

conditions

- **7** Incorrect or violate the local related instrument installation, wiring or the use regulations
- ➔ Wroks with the equipmets which are not electrically compatable with the instrument or not certified or not assured with quality ensurance
 - ➔ Unauthorized disassemble or repair
 - **7** Out of one year warrenty
 - **7** Force majeure as defined by applicable laws
- For thos fault instruments within warranty, users should pay for the freight for sending instrument to us, the fees for exchange or repair and the freight for sending back are taken by us
- If there is not faulty found in the istrument sent back to us, users should take all the freights.
- Once the faulties found in the instrument send to us, unless under the special circumstances, the new or repaired instrumnent will be send back out within 48 hours or 2 working days.
- If a faulty appears, contact us or your local agent

Appendix 1 Modbus register address table

Floating point data arrangement is F2-F1-F4-F3 (F4-F3-F2-F1 High to low)

register address	Register name	Register number	data type	data format
4x0001-4x0002	Flow	2	float	IEEE754
	TXD	01 03 00 00 00 02 C4 0B		
	RXD	01 03 04 00 00 00 00 FA 33		
4x0003-4x0004	velocity	2	float	IEEE754
	TXD	01 03 00 02 00 02 65 CB		
	RXD	01 03 04 00 00 00 00 FA 33		
4x0005-4x0006	current	2	float	IEEE754
	TXD		01 03 00 04 00 02	85 CA
	RXD	(01 03 04 00 00 00 0	0 FA 33
4x0007-4x0008	Cumulative decimal	2	Unsigned long	F4-F3-F2-F1
	TXD	01 03 00 06	00 02 24 0A	
	RXD	01 03 04 00	00 00 00 FA 33	
4x0009-4x0010	Cumulative decimal	2	float	IEEE754
	TXD	01 03 00 08 00 02 45 C9		45 C9
	RXD	01 03 04 00 00 00 00 FA 33		0 FA 33
4x0011-4x0012	Cumulative float	2	float	IEEE754
	TXD	01 03 00 0A 00 02 E4 09		
	RXD	01 03 04 00 00 00 00 FA 33		0 FA 33
4x0013-4x0014	Gas temperature	2 float		IEEE754
	TXD	01 03 00 0C 00 02 04 08		04 08
	RXD	C)1 03 04 BA 4A 41 F	8 CF 2F
4x0015-4x0016	Current acquisition signal value	2	float	IEEE754
	TXD	01 03 00 0E 00 02 A5 C8		A5 C8
	RXD	(01 03 04 82 1F 40 3	6 52 5B
4x0017-4x0018	Lower Range	2	float	IEEE754
4x0019-4x0020	Upper Range	2	float	IEEE754
4x0021	Lower relay status	1	Unsigned int	0- open 1- close
4x0022	Upper relay status	1	Unsigned int	0- open 1- close
4x0051-4x0052	ID number	2	Unsigned long	F4-F3-F2-F1
4x0053	Device ID	1	Unsigned int	0-255
4x0054	BaudRate	1	Unsigned int	
4x0055	Parity	1	Unsigned int	
4x0056	StopBit	1	Unsigned int	

Appendix 2 Conversion Coefficient of Common Gas

According to different gas on site, the calibration in lab translates the flow rate of actual gas on site into flow rate of air, and then begins to calibrate the flow rate at present. Therefore, when using the meter on site, the meter displays mass flow or volume flow of actual gas.

When translating the flow rate of gas into flow rate of air, there is a conversion coefficient table of different gas.

		Specific heat	Density	Conversion
	Gas	(Kal/g*℃)	(g/l, 0℃)	Coefficient
0	Air	0.24	1.2048	1.0000
1	Argon (Ar)	0.125	1.6605	1.4066
2	Arsine (AsH ³)	0.1168	3.478	0.6690
3	Boron Tribromide (BBr ³)	0.0647	11.18	0.3758
4	Boron Trichloride (BCl ³)	0.1217	5.227	0.4274
5	Boron Trifluoride (BF ³)	0.1779	3.025	0.5050
6	Borane (B ² H ⁶)	0.502	1.235	0.4384
7	Carbon Tetrachloride (CCl ⁴)	0.1297	6.86	0.3052
8	Carbon Tetrafluoride (CF ⁴)	0.1659	3.9636	0.4255
9	Methane (CH ⁴)	0.5318	0.715	0.7147
10	Acetylene (C ² H ²)	0.4049	1.162	0.5775
11	Ethylene (C ² H ⁴)	0.3658	1.251	0.5944
12	Ethane (C ² H ⁶)	0.4241	1.342	0.4781
13	Allylene (C ³ H ⁴)	0.3633	1.787	0.4185
14	Propylene (C ³ H ⁶)	0.3659	1.877	0.3956
15	Propane (C ³ H ⁸)	0.399	1.967	0.3459
16	Butyne (C ⁴ H ⁶)	0.3515	2.413	0.3201
17	Butene (C ⁴ H ⁸)	0.3723	2.503	0.2923
18	Butane (C ⁴ H ¹⁰)	0.413	2.593	0.2535
19	Pentane (C ⁵ H ¹²)	0.3916	3.219	0.2157
20	Carbinol (CH ³ OH)	0.3277	1.43	0.5805
21	Ethanol (C ² H ⁶ O)	0.3398	2.055	0.3897
22	Trichloroethane (C ³ H ³ Cl ³)	0.1654	5.95	0.2763
23	Carbon Monoxide (CO)	0.2488	1.25	0.9940
24	Carbon Dioxide (CO ²)	0.2017	1.964	0.7326
25	Cyanide (C ² N ²)	0.2608	2.322	0.4493
26	Chlorine (Cl ²)	0.1145	3.163.	0.8529
27	Deuterium (D ²)	1.7325	0.1798	0.9921
28	Fluoride (F ²)	0.197	1.695	0.9255
29	Germanium Tetrachloride (GeCl ⁴)	0.1072	9.565	0.2654
30	Germane (GeH ₄)	0.1405	3.418	0.5656

Table 1 The Density and Conversion Coefficient of Common Gas

31	Hydrogen (H ₂)	3.4224	0.0899	1.0040
32	Hydrogen Bromide (HBr)	0.0861	3.61	0.9940
33	Hydrogen Chloride (HCI)	0.1911	1.627	0.9940
34	Hydrogen Fluoride (HF)	0.3482	0.893	0.9940
35	Hydrogen Iodide (HI)	0.0545	5.707	0.9930
36	Hydrogen Sulfide (H ₂ S)	0.2278	1.52	0.8390
37	Helium (He)	1.2418	0.1786	1.4066
38	Krypton (Kr)	00593	3.739	1.4066
39	nitrogen (N ₂)	0.2486	1.25	0.9940
40	Neon (Ne)	0.2464	0.9	1.4066
41	Ammonia (NH ₃)	0.5005	0.76	0.7147
42	Nitric Oxide (NO)	0.2378	1.339	0.9702
43	Nitrogen Dioxide (NO2)	0.1923	2.052	0.7366
44	Nitrous Oxide (N ₂ O)	0.2098	1.964	0.7048
45	Oxygen (O ₂)	0.2196	1.427	0.9861
46	Phosphorus Trichloride (PCI 3)	0.1247	6.127	0.3559
47	Phosphorane (PH ₃)	0.261	1.517	0.6869
48	Phosphorus Pentafluoride (PF5)	0.1611	5.62	0.3002
49	Phosphorus Oxychloride (POCI ₃)	0.1324	6.845	0.3002
50	Silicon Tetrachloride (SiCl ₄)	0.127	7.5847	0.2823
51	Silicon Fluoride (SiF4)	0.1692	4.643	0.3817
52	Silane (SiH₄)	0.3189	1.433	0.5954
53	Dichlorosilane (SiH ₂ Cl ₂)	0.1472	4.506	0.4095
54	Trichlorosilane (SiHCl ₃)	0.1332	6.043	0.3380
55	Sulfur Hexafluoride (SF6)	0.1588	6.516	0.2624
56	Sulfur Dioxide (SO ₂)	0.1489	2.858	0.6829
57	Titanium Tetrachloride (TiCl4)	0.1572	8.465	0.2048
58	Tungsten Hexafluoride (WF6)	0.0956	13.29	0.2137
59	Xenon (Xe)	0.0379	5.858	1.4066

Appendix 3 Trouble Shooting

Before any hardware repair, please ensure all following points are correct as these affect the performance

- 1. Check if the instrument is correctly supplied power
- 2. Check if the instrument wiring is correct against Charpter 2
- 3. Check the straightway lengths are properly set as discribed in Chapter 6.2
- 4. Check if the actual flow direction is same as the indicator on instrument is
- 5. Check if there are pipe leaks

Cut off the power supply before removing instrument Make sure the pipe is decompressed before repair

Troubles Possible causes		Solutions		
	Abnormal or irregular fluid	Refer to chapter6.2		
	The flow regulator is not installed in front of instrument	Correct the installation		
Velocity is	Sensor faulty	Send to manufacturer		
anomaly or fluctuation	Electronic component anomaly	Send to manufacturer		
nucluation	Incorrect or unstable grounding	Check the wiring		
Measured velocity is too high or too	The direction of sensor is not correct	The flow direction indicator arrow points to the downstream		
low	The flow regulator is not installed in front of instrument	Correct the installation		
	No power	Turn the power supply on		
	Gas contains water	Install a dryer of filter at upstream		
No response for	The signal cut-off is set too high	Set a correct value by using keyboard of software		
the flow	The actual flow rate is less than the instruction minimum flow	Set instrument span or contact manufacturer for re-calibrating		
	Sensor faulty	Send to manufacturer		
	PCB faulty	Send to manufacturer		

Appendix 4 Upper Range Value of Common Gas

(Unit: Nm³/h. The follow table can be extended)

Nominal Diameter (mm)	Air	Nitrogen (N ₂)	Oxygen (O ₂)	Hydrogen(H ₂)
15	65	65	32	10
25	175	175	89	28
32	290	290	144	45
40	450	450	226	70
50	700	700	352	110
65	1200	1200	600	185
80	1800	1800	900	280
100	2800	2800	1420	470
125	4400	4400	2210	700
150	6300	6300	3200	940
200	10000	10000	5650	1880
250	17000	17000	8830	2820
300	25000	25000	12720	4060
400	45000	45000	22608	7200
500	70000	70000	35325	11280
600	100000	100000	50638	16300
700	135000	135000	69240	22100
800	180000	180000	90432	29000
900	220000	220000	114500	77807
1000	280000	280000	141300	81120
1200	400000	400000	203480	91972
1500	600000	600000	318000	101520
2000	700000	700000	565200	180480

The flow rate in standard condition: The flow rate is in the condition of 20°C temperature and 101.325kPa pressure.

The unit of flow rate is optional: Nm3/h, Nm3/min, L/h, L/min, t/h, t/min, kg/h or kg/min.

The reduction formula of flow rate in working condition and flow rate in standard condition:

$$Qs = \frac{0.101325 + p}{0.10325} * \frac{273.15 + 20}{273.15 + t} * Qn$$

Qs: The flow rate in standard condition (Nm3/h).

Qn: The flow rate in working condition (m3/h).

t: The medium temperature in working condition ($^{\circ}\!\!\!\mathrm{C}$).

p: The medium pressure in working condition (Gauge pressure, kPa).